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ABSTRAK  
Penelitian ini bertujuan untuk membangun model kecanduan menonton film kartun serta menganalisis 

kestabilan titik tetap dan sensitivitas parameter. Kebaruan penelitian ini terletak pada model matematika 

kecanduan menonton film kartun dengan membagi populasi ke dalam empat kelas utama, yaitu individu rentan, 

kadang-kadang, kecanduan, dan berhenti permanen. Metode yang digunakan meliputi formulasi model 

matematis berbasis sistem persamaan diferensial, perhitungan bilangan reproduksi dasar dengan pendekatan 

next generation matrix, analisis kestabilan titik tetap, serta evaluasi indeks sensitivitas untuk mengidentifikasi 

parameter yang berpengaruh terhadap bilangan reproduksi dasar. Hasil analisis menunjukkan bahwa titik tetap 

tanpa kecanduan stabil asimtotik lokal ketika ℛ0 < 1, sedangkan titik tetap endemik stabil asimtotik lokal 

ketika ℛ0 > 1. Analisis sensitivitas memperlihatkan bahwa parameter laju masuknya individu rentan (𝜋) dan 

laju efektifitas kontak (𝛼) berkontribusi positif terhadap peningkatan ℛ0, sementara parameter transisi rentan 

ke tak tertarik film kartun (𝛿), laju pemulihan dari kecanduan (𝜀), dan kematian alami (𝜇) berperan menurunkan 

ℛ0. Simulasi numerik mendukung hasil analisis teoretis dengan memperlihatkan dinamika populasi yang 

sesuai dengan kondisi kestabilan titik tetap. Kesimpulannya, model ini memberikan gambaran komprehensif 

tentang dinamika kecanduan film kartun dan dapat digunakan untuk merancang strategi pencegahan serta 

penanganan yang lebih tepat dalam masyarakat. 

  

Kata kunci: Model Matematika; Kecanduan film kartun; Kestabilan Titik tetap; Sensitivitas Parameter  

 

ABSTRACT 
This study aims to develop a model of cartoon addiction and analyze the stability of fixed points and 

parameter sensitivity. The novelty of this study lies in the mathematical model of cartoon addiction by dividing 

the population into four main classes, namely vulnerable individuals, occasional viewers, addicts, and those 

who have permanently stopped watching cartoons. The methods used include the formulation of a 

mathematical model based on a system of differential equations, the calculation of the basic reproduction 

number using the next generation matrix approach, the analysis of fixed point stability, and the evaluation of 

sensitivity indices to identify parameters that affect the basic reproduction number. The results of the analysis 

show that the fixed point without addiction is locally asymptotically stable when ℛ0 < 1, while the endemic 

fixed point is locally asymptotically stable when ℛ0 > 1. Sensitivity analysis shows that the parameters of the 

entry rate of susceptible individuals (𝜋) and the effective contact rate (𝛼) contribute positively to the increase 

in ℛ0, while the parameters of the transition from susceptible to not interested in cartoons (𝛿), the recovery 

rate from addiction (𝜀), and natural mortality (𝜇) contribute to the decrease in ℛ0. In conclusion, this model 

provides a comprehensive overview of the dynamics of cartoon addiction and can be used to design more 

appropriate prevention and treatment strategies in society. 
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PENDAHULUAN 

 
Film kartun merupakan salah satu bentuk hiburan digital yang sangat mudah diakses melalui 

televisi, platform streaming, dan media daring sehingga paparan masyarakat terhadap konten animasi 

terus meningkat (Bushman & Anderson, 2017; Verakandhi, 2024; Dinç, 2025). Industri animasi 

global yang berkembang pesat, khususnya di Jepang dan Tiongkok, menghasilkan karya dengan 

grafis berkualitas tinggi dan alur cerita yang menarik sehingga mampu mempertahankan perhatian 

penonton dalam waktu yang lama (Napier, 2001; Junzhe et al., 2024). Daya tarik visual dan 

kemudahan akses tersebut mendorong sebagian individu menonton film kartun secara berlebihan, 

yang dalam beberapa kondisi dapat berkembang menjadi bentuk kecanduan perilaku (Kuss & 

Griffiths, 2012). Fenomena ini menimbulkan dampak negatif pada kesehatan fisik seperti gangguan 

tidur dan kelelahan mata, serta memengaruhi perkembangan sosial dan psikologis terutama pada 

kelompok usia muda (Rideout et al., 2010; Gentile et al., 2014). 

Kecanduan terhadap aktivitas digital seperti game, media sosial, maupun tontonan animasi 

memiliki pola penyebaran kebiasaan yang serupa dengan dinamika epidemiologi sehingga dapat 

dianalisis menggunakan pendekatan biomatematika (Weinstein, 2010). Sejumlah penelitian terdahulu 

mengadopsi model epidemiologi untuk memperkirakan dan memahami penyebaran perilaku adiktif 

dalam masyarakat, termasuk model penyebaran kebiasaan merokok (Zaman, 2011), kecanduan 

alkohol (Khajji et al, 2020), penyalahgunaan narkoba (White & Comiskey, 2007), serta kecanduan 

game online (Guo et al., 2020; Kaleb & Endiriyas, 2025; Syata & Halim, 2025). Berbagai penelitian 

tersebut membuktikan bahwa pemodelan matematika dapat digunakan untuk menilai faktor 

penyebab, proses penyebaran, serta potensi pengendalian fenomena kecanduan (Hethcote, 2000). 

Oleh karena itu, pendekatan ini relevan untuk diterapkan dalam memahami kecanduan film kartun 

sebagai salah satu bentuk perilaku adiktif yang berkembang pada masyarakat modern. 

Dalam konteks ini, penelitian tentang kecanduan film kartun dapat disederhanakan dalam 

persamaan matematika dengan membagi populasi ke dalam empat kelas utama, yaitu A (rentan), yaitu 

individu yang memiliki potensi menjadi kecanduan; B (kecanduan film kartun), yaitu individu yang 

menonton film kartun secara berlebihan; C (berhenti permanen), yaitu individu yang telah berhasil 

berhenti dari kebiasaan kecanduan; dan D (tidak tertarik menonton film kartun), yaitu individu yang 

tidak memiliki minat terhadap film kartun (Murray, 2002). Pembagian kelas ini memungkinkan 

pelacakan perpindahan individu dari satu perilaku ke perilaku lain sesuai dinamika sosial dan 

kebiasaan menonton. Struktur kelas tersebut memberikan kerangka matematis untuk mengevaluasi 

bagaimana kecanduan dapat muncul, menyebar, atau berkurang dalam suatu populasi. 

Untuk memahami dinamika sistem secara menyeluruh, analisis kestabilan dan sensitivitas 

perlu dilakukan pada titik tetap bebas kecanduan maupun titik tetap endemik menggunakan teori 

sistem dinamik (Perko, 2013). Bilangan reproduksi dasar dihitung menggunakan metode Next 

Generation Matrix untuk menentukan apakah kecanduan akan hilang atau bertahan dalam populasi 

(Van den Driessche & Watmough, 2002). Selain itu, analisis sensitivitas digunakan untuk 

mengidentifikasi parameter dominan yang memengaruhi perubahan bilangan reproduksi dasar 

sehingga dapat diketahui faktor-faktor penting dalam pengendalian kecanduan (Edelstein-Keshet, 

2005). Dengan demikian, penelitian ini bertujuan untuk memberikan gambaran matematis yang 

komprehensif mengenai dinamika kecanduan film kartun serta mendukung upaya penyusunan 

strategi intervensi dan pencegahan yang lebih efektif. 

 

METODE PENELITIAN 

  
Metode penelitian ini merupakan penelitian analitis-teoretis yang menggunakan pendekatan 

pemodelan matematis melalui sistem persamaan diferensial taklinier. Penelitian berfokus pada 

analisis perilaku dinamika populasi dalam konteks kecanduan film kartun. Model disusun 

berdasarkan diagram alur kelas ABCD dan asumsi biologis serta perilaku yang relevan. Setelah model 

terbentuk, dilakukan analisis untuk menentukan daerah solusi sehingga dapat dipastikan bahwa setiap 

solusi bersifat tak-negatif dan terbatas. Selanjutnya, ditentukan titik tetap bebas kecanduan dan titik 

tetap endemik melalui penyelesaian sistem stasioner, serta dihitung bilangan reproduksi dasar 
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menggunakan pendekatan Next Generation Matrix sebagai indikator peluang bertahannya kecanduan 

dalam populasi. 

Analisis kestabilan dilakukan dengan mengevaluasi titik tetap bebas kecanduan berdasarkan 

bilangan reproduksi dasar dan menggunakan matriks Jacobi serta kriteria Routh–Hurwitz untuk 

menganalisis kestabilan titik tetap endemik. Selain itu, dilakukan analisis sensitivitas untuk 

mengetahui parameter-parameter yang paling berpengaruh terhadap perubahan bilangan reproduksi 

dasar. Tahap akhir penelitian berupa simulasi numerik yang bertujuan untuk memvisualisasikan 

dinamika populasi pada kondisi ℛ0 < 1 dan ℛ0 > 1. Simulasi ini sekaligus menjadi verifikasi hasil 

analisis teoretis yang diperoleh sebelumnya. 

 

HASIL DAN PEMBAHASAN 

  
Model Matematika  

Dalam pembentukan model penyebaran kecanduan film kartun, populasi dibagi menjadi 4 

kelas yaitu 𝐴, 𝐵, 𝐶, dan 𝐷, serta model ini disebut sebagai model ABCD. Kelas A menyatakan jumlah 

individu yang memiliki potensi menjadi kecanduan menonton film kartun. Jumlah individu pada kelas 

ini akan bertambah melalui masuknya individu baru ke populasi dengan laju 𝜋 . Kelas 𝐴  akan 

berkurang karena beberapa faktor, yaitu adanya individu yang menjadi kecanduan akibat interaksi 

dengan individu pada kelas B dengan tingkat kejenuhan 𝑓(𝐴, 𝐵) =
𝛼𝐴𝐵

1+𝜎𝐵
, kematian alami dengan laju 

𝜇, serta perpindahan langsung ke kelas 𝐷 akibat pencegahan atau penolakan minat menonton film 

kartun dengan laju 𝛿. Kelas 𝐵 menyatakan jumlah individu yang kecanduan menonton film kartun. 

Individu pada kelas ini akan bertambah karena adanya perpindahan dari kelas  𝐴  melalui proses 

penularan atau paparan dengan laju jenuh 𝑓(𝐴, 𝐵) =
𝛼𝐴𝐵

1+𝜎𝐵
. Kelas ini akan berkurang karena 

pemulihan atau berhenti sementara menonton film kartun ke kelas 𝐶 dengan laju 𝜀, serta kematian 

alami dengan laju 𝜇.  

Kelas 𝐶  menyatakan jumlah individu yang berhenti menonton film kartun, tetapi 

pemulihannya belum mantap. Kelas ini akan bertambah akibat perpindahan dari kelas 𝐵 dengan laju 

𝜀. Jumlahnya akan berkurang karena adanya perpindahan ke kelas 𝐷 sebagai individu yang benar-

benar mantap tidak berminat menonton film kartun dengan laju 𝜃, serta kematian alami dengan laju 

𝜇. Kelas D menyatakan jumlah individu yang tidak memiliki keinginan menonton film kartun. Jumlah 

individu pada kelas ini akan bertambah melalui dua jalur, yaitu perpindahan dari kelas A akibat 

pencegahan atau penolakan minat dengan laju 𝛿 dan perpindahan dari kelas C melalui pemantapan 

berhenti dengan laju 𝜃. Kelas ini akan berkurang karena kematian alami dengan laju 𝜇.  

Dari asumsi diatas dapat dibuatkan diagram alur model ABCD, sebagai berikut :  

 

 

 

 

 

 

 

           Gambar 1. Diagram Alur Model ABCD 

 

Berdasarkan asumsi dan gambar, maka model matematika yang terbentuk adalah : 
𝑑𝐴

𝑑𝑡
= 𝜋 −

𝛼𝐴𝐵

1 + 𝜎𝐵
− (𝜇 + 𝛿)𝐴, 

𝑑𝐵

𝑑𝑡
=

𝛼𝐴𝐵

1+𝜎𝐵
− (𝜇 + 𝜀)𝐵,                                            (1) 

𝑑𝐶

𝑑𝑡
= 𝜀𝐵 − (𝜇 + 𝜃)𝐶, 

𝑑𝐷

𝑑𝑡
= 𝛿𝐴 + 𝜃𝐶 − 𝜇𝐷. 

Di mana 𝑁 =  𝐴 + 𝐵 + 𝐶 + 𝐷  adalah total populasi. 

𝛿𝐷 

𝜃𝐶 𝜀𝐵 

𝜇𝐵 

𝑓(𝐴, 𝐵) 𝜋 

𝜇𝐶 𝜇A 

A B C D 

𝜇𝐷 
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Tabel 1. Deskripsi Parameter Model ABCD 

Parameter Keterangan Satuan 

𝜋 Laju individu baru yang rentan  Orang/waktu 

𝛼 Laju efektifitas kontak 1/(orang × waktu) 

𝜎 Faktor penghambat 1/orang 

𝛿 Laju individu A ke D 1/waktu 

𝜀 Laju individu B ke C  1/waktu 

𝜃 Laju individu C ke D 1/waktu 

𝜇 Laju kematian alami  1/waktu 

 

Daerah solusi model ABCD pada sistem adalah taknegatif dan terbatas untuk setiap waktu. 

Hal ini dapat ditunjukkan berdasarkan lemma berikut 

Lemma 1. Himpunan 𝛺 = {(𝐴, 𝐵, 𝐶, 𝐷) ∈ ℝ+
4 : 0 ≤ 𝐴 + 𝐵 + 𝐶 + 𝐷 ≤

𝜋

𝜇
+ 𝑁0} adalah solusi yang 

taknegatif dan terbatas dari sistem dimana 𝑁0 adalah total populasi pada saat 𝑡0. 

 

Bukti. Misalkan 𝑁 = 𝐴 + 𝐵 + 𝐶 + 𝐷, berdasarkan sistem (1) diperoleh  

 
𝑑𝑁

𝑑𝑡
= 𝜋 − 𝜇𝑁 

 

𝑁 =
𝜋

𝜇
(1 − 𝑒−𝜇𝑡) + 𝑁0𝑒

−𝜇𝑡 

 

Karena 0 < 𝑒−𝜇𝑡 ≤ 1 untuk setiap 𝑡 ≥ 0 maka diperoleh 

 

𝑁 ≤
𝜋

𝜇
(1 − 𝑒−𝜇𝑡) + 𝑁0𝑒

−𝜇𝑡 

 

Karena 𝐴, 𝐵, 𝐶, dan 𝐷 taknegatif maka untuk setiap 𝑡 ≥ 0 diperoleh 

 

0 ≤ 𝐴 + 𝐵 + 𝐶 + 𝐷 ≤
𝜋

𝜇
+ 𝑁0 

 

Titik Tetap dan Bilangan Reproduksi Dasar 

 Titik tetap sistem akan diperoleh dengan 
𝑑𝐴

𝑑𝑡
=

𝑑𝐵

𝑑𝑡
=

𝑑𝐶

𝑑𝑡
=

𝑑𝐷

𝑑𝑡
= 0 , sehingga diperoleh 

persamaan berikut 

𝜋 −
𝛼𝐴𝐵

1 + 𝜎𝐵
− (𝜇 + 𝛿)𝐴 = 0, (2) 

𝛼𝐴𝐵

1 + 𝜎𝐵
− (𝜇 + 𝜀)𝐵 = 0, (3) 

𝜀𝐵 − (𝜇 + 𝜃)𝐶 = 0, (4) 

𝛿𝐴 + 𝜃𝐶 − 𝜇𝐷 = 0. (5) 

 

Dengan menyelesaikan persamaan (2)-(5) diperoleh dua titik tetap yaitu titik tetap bebas 

penyakit dan endemik. Titik tetap tanpa kecanduan 

 

𝐵 = 0, 𝐴 =
𝜋

𝜇+𝛿
, 𝐶 = 0, 𝐷 =

𝛿𝜋

𝜇(𝜇+𝛿)
. 

 

Bilangan reproduksi dasar dihitung dengan menggunakan metode the next generation matrix 

untuk sistem (1).  Dari sistem (1) dituliskan Kembali persamaan kelas infeksi yaitu 
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𝑑𝐵

𝑑𝑡
=

𝛼𝐴𝐵

1 + 𝜎𝐵
− (𝜇 + 𝜀)𝐵. 

 

Berdasarkan sistem (1) diperoleh fungsi ℱ𝑖 dan 𝒱𝑖 sebagai berikut 

 

ℱ𝑖 =
𝛼𝐴𝐵

1+𝜎𝐵
, 𝒱𝑖 = (𝜇 + 𝜀)𝐵. 

 

Matriks Jacobi fungsi ℱ𝑖 dan 𝒱𝑖 yang dievaluasi terhadap titik tetap tanpa penyakit Adalah 

 

𝑀 =
𝛼𝜋

(𝜇+𝛿)
, 𝑁 = (𝜇 + 𝜀). 

 

Bilangan reproduksi dasar diperoleh dari nilai eigen dominan dari matriks 𝑀𝑁−1, yaitu 

 

ℛ0 =
𝛼𝜋

(𝜇 + 𝛿)(𝜇 + 𝜀)
. 

 

Titik tetap endemik merupakan kondisi dimana terdapat kecanduan dalam suatu populasi dan  

dapat menularkan. Dari sistem diperoleh titik tetap endemik. 

 

𝐵∗ =
(𝜇+𝛿)(ℛ0−1)

(𝜇+𝛿)𝜎+𝛼
, 𝐴∗ =

(𝜇+𝜀)(1+𝜎𝐵∗)

𝛼
, 𝐶∗ =

𝜀𝐵∗

(𝜇+𝜃)
, 𝐷∗ =

𝛿𝐴∗+𝜃𝐶∗

𝜇
. 

 

Sehingga titik tetap endemik yaitu 𝐸∗(𝐴, 𝐵, 𝐶, 𝐷). 
 

Analisis Sensitivitas 

Untuk memahami pengaruh setiap parameter dalam menentukan dinamika model, dilakukan 

analisis sensitivitas terhadap nilai ℛ0. Analisis ini bertujuan untuk mengetahui seberapa besar 

perubahan suatu parameter akan memengaruhi nilai ℛ0, sehingga dapat diidentifikasi parameter 

mana yang paling berperan penting dalam penyebaran maupun pengendalian dinamika sistem. Hasil 

analisis sensitivitas ditunjukkan pada Tabel berikut yang memuat parameter-parameter model beserta 

indeks sensitivitasnya terhadap nilai ℛ0. 

 

Tabel 2. Indeks Sensitivitas Parameter model ABCD 

Parameter Indeks Sensitivitas 

𝜋 𝐶𝜋
ℛ0 =

𝛼

(𝜇 + 𝛿)(𝜇 + 𝜀)
> 0 

𝛼 𝐶𝛼
ℛ0 =

𝜋

(𝜇 + 𝛿)(𝜇 + 𝜀)
> 0 

𝛿 𝐶𝛿
ℛ0 =

−𝛼𝜋

(𝜇 + 𝜀)(𝜇 + 𝛿)2
< 0 

𝜀 𝐶𝜀
ℛ0 =

−𝛼𝜋

(𝜇 + 𝛿)(𝜇 + 𝜀)2
< 0 

𝜇 𝐶𝜇
ℛ0 =

−𝛼𝜋(2𝜇 + 𝛿 + 𝜀)

(𝜇2 + (𝛿 + 𝜀)𝜇 + 𝛿𝜀)2
< 0 

 

Tabel parameter dan indeks sensitivitas tersebut menunjukkan bagaimana perubahan setiap 

parameter memengaruhi bilangan reproduksi dasar ℛ0 pada model yang dikaji. Parameter 𝜋 (laju 

masuknya individu rentan) dan 𝛼  (laju efektifitas kontak) memiliki indeks sensitivitas positif, 

sehingga peningkatan kedua parameter ini akan menaikkan nilai ℛ0 dan memperbesar kemungkinan 

penyebaran atau bertahannya kecanduan. Sebaliknya, parameter 𝛿 (laju transisi individu rentan ke tak 

tertarik film kartun), 𝜀  (laju berhenti pemulihan dari kecanduan), dan 𝜇  (laju kematian alami), 

memiliki indeks sensitivitas negatif, yang berarti peningkatan nilai salah satunya justru menurunkan 

ℛ0  dan menghambat keberlangsungan kecanduan. Dengan demikian, analisis sensitivitas ini 



58 
 

memperlihatkan bahwa faktor-faktor yang meningkatkan laju pemulihan, transisi keluar dari 

kecanduan, maupun laju kematian alami individu dapat menjadi kunci dalam menekan penyebaran 

kecanduan, sedangkan faktor yang meningkatkan peluang masuk atau interaksi menuju kecanduan 

justru memperbesar risiko keberlanjutan fenomena tersebut. 

 

Analisis Kestabilan  

Pada bagian ini dilakukan analisis kestabilan titik tetap berdasarkan teorema berikut. 

Teorema 1. Titik tetap tanpa penyakit 𝐸0 untuk sistem bersifat stabil asimtotik jika ℛ0 < 1, dan tidak 

stabil jika ℛ0 > 1. 
 

Bukti. Matriks jacobi untuk titik tetap tanpa penyakit yaitu 

 

𝐽𝐸0
=

[
 
 
 
 
 −(𝜇 + 𝛿)

−𝛼𝜋

𝜇 + 𝛿
0 0

0 −(
−𝛼𝜋

𝜇 + 𝛿
+ 𝜇 + 𝜀) 0 0

0 𝜀 −(𝜇 + 𝜃) 0
𝛿 0 𝜃 −𝜇]

 
 
 
 
 

 

(𝜆 + 𝜇)(𝜆 + 𝜇 + 𝜃) (𝜆 + (
−𝛼𝜋

𝜇 + 𝛿
+ 𝜇 + 𝜀)) (𝜆 + 𝜇 + 𝛿) = 0 

𝜆1 = −𝜇, 𝜆2 = −(𝜇 + 𝜃), 𝜆3 = −(𝜇 + 𝛿), 𝜆4 =
𝛼𝜋

𝜇 + 𝛿
− (𝜇 + 𝜀) 

Jelas bahwa 𝜆1,2,3 < 0 dan 𝜆4 < 0  jika ℛ0 < 1 , sehingga kestabilan titik tetap bebas 

kecanduan adalah stabil asimtotik local jika ℛ0 < 1. 

 

Teorema 2. Titik tetap endemik 𝐸∗ untuk sistem stabil asimtotik jika ℛ0 > 1, dan tidak stabil jika 

ℛ0 < 1. 

Bukti. Matriks Jacobi untuk titik tetap endemik yaitu 

𝐽 = [

−Φ2 −Φ3 0 0
Φ1 −Φ4 0 0

0 𝜀 −(𝜇 + 𝜃) 0
𝛿 0 𝜃 −𝜇

] 

Persamaan karakteristik 

(𝜆 + 𝜇)(𝜆 + 𝜇 + 𝜃)(𝜆2 + 𝑄1𝜆 + 𝑄2) = 0 

Dimana 

Φ1 =
𝛼(𝜇 + 𝛿)(ℛ0 − 1)

𝛼 + 𝜎(𝜇 + 𝛿)ℛ0
 

 

Φ2 = Φ1 + 𝜇 + 𝛿 

 

Φ3 =
(𝜇 + 𝜀)(𝛼 + 𝜎(𝜇 + 𝛿))

𝛼 + 𝜎(𝜇 + 𝛿)ℛ0
 

 

Φ4 =
(𝜇 + 𝜀)𝜎(𝜇 + 𝛿)(ℛ0 − 1)

𝛼 + 𝜎(𝜇 + 𝛿)ℛ0
 

 

𝑄1 = Φ2 + Φ4 

𝑄2 = Φ2Φ4 + Φ1Φ3 

Dari persamaan tersebut diperoleh 𝜆1 = −𝜇 < 0  dan 𝜆2 = −(𝜇 + 𝜃) < 0 . Jika ℛ0 > 1 

diperoleh 𝑄1 > 0 dan 𝑄2 > 0 sehingga menurut kriteria routh hourwitz bagian real dari 𝜆3,4 < 0. 
Berdasarkan penjabaran tersebut, kita dapat menyimpulkan bahwa 𝜆1,2 < 0 dan 𝜆3,4 < 0 jika 

ℛ0 > 1 sehingga kestabilan titik tetap endemik Adalah stabil asimtotik lokal. 
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Simulasi Numerik 

Simulasi numerik pada model dilakukan untuk menunjukkan sifat kestabilan dari masing-

masing titik tetap dan untuk memahami hal-hal yang terjadi dalam sistem dinamik. Simulasi model 

kecanduan film kartun dilakukan dengan mengubah-ubah nilai parameter yang masih memungkinkan 

untuk dikontrol oleh manusia dalam upaya penekanan kecanduan film kartun.  

 

Tabel 3. Nilai Parameter Model ABCD 

Parameter Keterangan 

𝜋 0,9 

𝜎 0,1 

𝛿 0,12 

𝜀 0,15 

𝜃 0,1 

𝜇 0,01 

 

Untuk Simulasi Numerik  ℛ0 < 1 , misalkan diberikan nilai parameter dan 𝛼 = 0,01 

diperoleh ℛ0 = 0,43 dan titik tetap tanpa kecanduan (A = 6,92, B = 0, C = 0, D = 83,08), dinamika 

populasi pada gambar berikut. 

 

 
Gambar 2. Simulasi numerik model ABCD dengan ℛ0  < 1 

 

Gambar 2 menunjukkan hasil simulasi numerik model kecanduan film kartun pada kondisi 

ℛ0  < 1. Nilai ini menunjukkan bahwa satu individu kecanduan rata-rata tidak mampu menularkan 

perilaku kecanduan kepada lebih dari satu individu rentan. Dengan demikian, kecanduan tidak dapat 

mempertahankan keberadaannya dalam populasi, dan sistem bergerak menuju titik tetap bebas 

kecanduan. 

Hasil simulasi memperlihatkan bahwa jumlah individu rentan (A) secara bertahap meningkat 

dan mendekati nilai kesetimbangan A = 6,92. Hal ini terjadi karena tidak adanya tekanan infeksi dari 

kelas kecanduan, sehingga populasi rentan hanya dipengaruhi oleh laju masuknya individu baru dan 

laju berpindah ke kelas berhenti permanen. 

Sementara itu, jumlah individu kecanduan (B) menurun dengan cepat hingga mencapai nol. 

Penurunan ini menggambarkan bahwa setiap individu yang awalnya berada pada kelas kecanduan 

tidak cukup efektif menularkan kecanduan kepada individu rentan, sehingga populasi kecanduan 

menghilang secara bertahap sebagaimana diprediksi oleh kondisi ℛ0 < 1. 

Pada saat yang sama, kelas pemulihan tidak sempurna (𝐶) juga menurun menuju nol. Karena 

perpindahan dari kecanduan menuju kelas ini berkurang drastis, maka C ikut menghilang seiring 

dengan hilangnya B. 

Adapun kelas berhenti permanen D meningkat menuju nilai kesetimbangan 𝐷 = 83,08. Kelas 

ini menjadi dominan karena individu dari kelas rentan maupun kelas pemulihan tidak sempurna 
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perlahan bermigrasi menuju keadaan berhenti permanen melalui proses pencegahan dan pemantapan 

berhenti. 

Secara keseluruhan, Gambar 2 menunjukkan bahwa apabila ℛ0 < 1, maka sistem akan selalu 

bergerak menuju titik tetap bebas kecanduan, yaitu kondisi di mana tidak terdapat individu kecanduan 

dalam populasi. Pada kondisi ini, kecanduan tidak dapat bertahan atau menyebar sehingga strategi 

pengendalian yang menekan laju interaksi atau meningkatkan laju pemulihan terbukti efektif dalam 

menghilangkan kecanduan secara menyeluruh. 

 

Untuk Simulasi Numerik ℛ0 > 1, Misalkan diberikan nilai parameter 𝛼 = 0,09 diperoleh ℛ0 

= 3,89 dan titik tetap kecanduan (A = 2,43, B = 3,65, C = 4,98, D = 78.94), dinamika populasi pada 

gambar berikut 

 

 
Gambar 3. Simulasi numerik model ABCD dengan ℛ0  > 1 

 

Gambar 3 menunjukkan hasil simulasi numerik model ABCD pada kondisi ℛ0 > 1. Nilai ini 

menunjukkan bahwa setiap individu yang kecanduan film kartun dapat “menularkan” kebiasaan 

tersebut kepada lebih dari satu individu rentan, sehingga kecanduan akan bertahan dan berkembang 

dalam populasi. Grafik pada gambar tersebut memperlihatkan dinamika seluruh kelas (A, B, C, dan 

D) menuju titik tetap endemik. 

Pada awal simulasi, jumlah individu rentan A mengalami penurunan signifikan. Hal ini 

disebabkan oleh tingginya laju interaksi yang menyebabkan sebagian besar individu rentan berpindah 

ke kelas kecanduan (B). Seiring waktu, nilai A tidak turun hingga nol, tetapi menuju nilai 

keseimbangan jangka panjang, yaitu  A = 2,43, yang sesuai dengan titik tetap endemik yang diperoleh 

secara analitis. Artinya, dalam keadaan endemik, populasi rentan tetap ada namun dalam jumlah yang 

relatif kecil. 

Kelas kecanduan B mengalami peningkatan pesat pada fase awal karena tingginya nilai ℛ0. 

Setelah mencapai puncaknya, jumlah individu kecanduan menurun perlahan menuju nilai setimbang 

B = 3,65. Hal ini menunjukkan bahwa kecanduan tetap bertahan dalam populasi meskipun tidak 

semua individu rentan berpindah ke kelas kecanduan. 

Sementara itu, jumlah individu pada kelas 𝐶  juga meningkat selama proses dinamika 

berlangsung. Individu yang sebelumnya kecanduan berpindah ke kelas C melalui laju pemulihan 

parsial, sehingga grafik menunjukkan peningkatan menuju nilai kesetimbangan C = 4,98. Nilai ini 

lebih besar daripada jumlah individu kecanduan pada titik tetap, yang menandakan bahwa lebih 

banyak individu memilih untuk berhenti sementara, meskipun masih memungkinkan untuk kembali 

kecanduan. 

Kelas D yaitu individu yang berhenti permanen, tetap menjadi kelas dengan populasi terbesar, 

stabil pada nilai setimbang D = 78,94. Nilai ini mendominasi struktur populasi karena adanya 

perpindahan dari individu rentan maupun individu yang sembuh tak sempurna menuju kelas berhenti 

permanen. Kondisi ini menggambarkan bahwa meskipun kecanduan dapat bertahan dalam populasi, 

sebagian besar individu mampu mencapai kondisi berhenti permanen. 
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Secara keseluruhan, Gambar 3 mendukung hasil analisis teoritis bahwa ketika ℛ0  > 1, maka 

sistem bergerak menuju titik tetap endemik. Semua kelas cenderung menuju nilai yang sama dengan 

titik tetap endemik yang diperoleh melalui analisis matematis, sehingga memvalidasi kestabilan titik 

endemik. Dengan demikian, simulasi ini menunjukkan bahwa kecanduan film kartun akan tetap eksis 

dan tidak dapat dihilangkan sepenuhnya tanpa intervensi signifikan yang mampu menurunkan ℛ0 di 

bawah 1. 

 

PENUTUP 

  
Simpulan 

Penelitian ini berhasil mengembangkan model biomatematika kecanduan film kartun dengan 

membagi populasi ke dalam empat kelas, yaitu rentan (A), kecanduan (B), pemulihan tak sempurna 

(C), dan berhenti permanen (D). Melalui analisis matematis, diperoleh bahwa bilangan reproduksi 

dasar menjadi faktor kunci dalam menentukan dinamika sistem. Ketika ℛ0 < 1, titik tetap bebas 

kecanduan bersifat stabil sehingga kecanduan akan hilang dari populasi. Sebaliknya, ketika ℛ0 > 1, 

titik tetap endemik menjadi stabil yang menunjukkan bahwa kecanduan dapat bertahan dan menyebar. 

Analisis sensitivitas menunjukkan bahwa parameter yang meningkatkan peluang kecanduan memiliki 

pengaruh positif terhadap nilai ℛ0, sedangkan parameter yang mendorong pemulihan dan penurunan 

kecanduan memiliki pengaruh negatif. Hasil simulasi numerik memperkuat analisis teoretis tersebut, 

di mana dinamika sistem selalu bergerak menuju titik tetap yang sesuai dengan kondisi ℛ0. Pada 

kondisi ℛ0 < 1, populasi kecanduan menurun hingga menghilang, sedangkan pada kondisi ℛ0 > 1, 

populasi kecanduan dan pemulihan tak sempurna mencapai nilai keseimbangan positif. Secara 

keseluruhan, penelitian ini menunjukkan bahwa pendekatan pemodelan matematis mampu 

memberikan gambaran komprehensif mengenai penyebaran kecanduan film kartun serta 

mengidentifikasi parameter-parameter yang berpengaruh penting. Temuan ini dapat menjadi dasar 

dalam merancang strategi pengendalian yang efektif, terutama melalui upaya menekan laju kontak 

efektif yang menyebabkan kecanduan dan meningkatkan laju pemulihan individu. 

 

Saran 

Penelitian selanjutnya dapat difokuskan pada pengembangan strategi kontrol optimal untuk 

mengurangi kecanduan film kartun, misalnya dengan menambahkan variabel kontrol yang 

merepresentasikan intervensi seperti edukasi, pembatasan akses tontonan, atau pengawasan orang 

tua. Dengan memasukkan kontrol tersebut ke dalam model yang telah dibangun, analisis optimal 

control dapat digunakan untuk menentukan bentuk intervensi yang paling efektif dalam menurunkan 

nilai R0R_0R0 serta menekan jumlah individu yang berpindah ke kelas kecanduan. Pendekatan ini 

akan memperkuat hasil penelitian sebelumnya dengan tidak hanya menggambarkan dinamika 

kecanduan, tetapi juga memberikan rekomendasi strategi pengendalian. 
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