OPTIMASI JALUR PERJALANAN ANTARA JAKARTA DAN SURABAYA MENGGUNAKAN ALGORITMA DIJKSTRA
Optimizing Travel Routes Between Jakarta and Surabaya Using the Dijkstra Algorithm
DOI:
https://doi.org/10.59896/aqlu.v3i1.140Keywords:
Algorithm, dijkstra, graph, distance, programAbstract
The Dijkstra algorithm is a popular method for determining the shortest path in a positively weighted graph and is widely used in various applications such as navigation systems and computer networks. This study analyzes the effectiveness of the Dijkstra algorithm in finding the shortest route between cities in Indonesia, using an example application between Jakarta and Surabaya. Each city is represented as a node and each road as an edge in the graph, with distance or travel time as the weight. The implementation is carried out in Python, using secondary data comprising 20 cities. The results indicate that the Dijkstra algorithm is capable of determining the shortest path between two cities, with the shortest distance found being 664.08 km between Jakarta and Surabaya. This study highlights the importance of optimizing the Dijkstra algorithm for greater efficiency in large networks, as well as its broad applications for improving efficiency in various fields, including transportation and computer networks.
References
Al Hakim, R. R., Satria, M. H., Arief, Y. Z., Pangestu, A., & Jaenul, A. (2021). Penggunaan Algoritma Dijkstra untuk Berbagai Masalah : Mini Review. Researchgate.Net, 1–10. https://rinarxiv.lipi.go.id/lipi/preprint/view/186
Anonim. (n.d.-a). DSA Dijkstra’s Algorithm. https://www-w3schools-com.translate.goog/dsa/dsa_algo_graphs_dijkstra.php?_x_tr_sl=en&_x_tr_tl=id&_x_tr_hl=id&_x_tr_pto=tc
Anonim. (n.d.-b). Indonesia Cities Database. https://simplemaps.com/data/id-cities
Anonim. (n.d.-c). THE SHORTEST PATH PROBLEM. 0–4.
Girsang, A. S. (2017). Algoritma Dijkstra. https://mti.binus.ac.id/2017/11/28/algoritma-dijkstra/
Rahmadi, D., & Herdianti, R. (2024). Penerapan Minimum Spanning Tree dalam Menentukan Rute Terpendek pada Wisata di Kota Wonogiri. Basis : Jurnal Ilmiah Matematika, 3(2), 31-39. doi:10.30872/basis.v3i2.1390
Rahmadi, D., Ramadhani, I. N., Dheana, C. E., & Mustamin, M. A. (2024). Modeling Network Problem using Metric Dimension: Applied Algorithm on Corona Graph. Mathematical Journal of Modelling and Forecasting, 2(1), 20–26. https://doi.org/10.24036/mjmf.v2i1.21
Rahmadi, D., Maharani, N. P., Syifa, M. R., Sama, S. A., & Ardiansyah, G. F. (2024). Optimasi Pemasangan Kabel Internet Antar Daerah Kabupaten Sleman Menggunakan Minimum Spanning Tree. Journal of Mathematics Theory and Applications, 2(2), 24–33. https://doi.org/10.32938/j-math22202424 - 33
Rahmadi, D. (2024). MIXED METRIC DIMENSION OF DOUBLE FAN GRAPH. Jurnal Diferensial, 6(1), 52-56. https://doi.org/10.35508/jd.v6i1.12526
Rahmadi, D. (2023). On Finding Shortest Path Over Vocational High School in Yogyakarta Based on Graph Theory Algorithm. Mathematical Journal of Modelling and Forecasting, 1(2), 10–14. https://doi.org/10.24036/mjmf.v1i2.14
Rahmadi, D., & Sandariria, H. (2023). Penerapan Minimum Spanning Tree dalam Menentukan Rute Terpendek Distribusi Naskah Soal USBN di SMA Negeri se- Sleman. Basis : Jurnal Ilmiah Matematika, 2(1), 66-71. doi:10.30872/basis.v2i1.1084
Albar, W., Rahmadi, D., & Dewi, K. (2023). The Implementation of Minimum Spanning Tree in Finding Algebraically the Shortest Path of National-Exam-Sheet Distribution in All Senior High Schools over Bantul Regency. Basis : Jurnal Ilmiah Matematika, 2(1), 78-82. doi:10.30872/basis.v2i1.1111
Rahmadi, Deddy. (2022). The k-Metric Dimension of Double Fan Graph. Quadratic: Journal of Innovation and Technology in Mathematics and Mathematics Education. 2. 31-35. 10.14421/quadratic.2022.021-05.
Sudibyo, N. A., Setyawan, P. E., & Hidayat, Y. P. S. R. (2020). Implementasi Algoritma Dijkstra Dalam Pencarian Rute Terpendek Tempat Wisata Di Kabupaten Klaten. Riemann: Research of Mathematics and Mathematics Education, 2(1), 1–9.
Sudibyo, N. A., Purwanto, T., & Rahmadi, D. (2020). Minimum Spanning Tree Pada Distribusi Bahan Naskah USBN SD/MI Di Kabupaten Sragen. Riemann: Research of Mathematics and Mathematics Education, 2(2), 64-69.
Zhao, J. (2024). Dijkstra’s Algorithm for fun. https://www.kaggle.com/code/jingzhouzhao/dijkstra-s-algorithm-for-fun
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Deddy Rahmadi, Tarisha Najwa Putri, Derrida Atsmarotul Ilmi, Sinta Miftakhul Rohmah, Dela Nuraini Safinka

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.