ANALISIS INTEGRAL FRAKSIONAL FUNGSI HIPERBOLIK: KASUS TANGEN DAN COTANGEN
Fractional Integral Analysis of Hyperbolic Function: The Case of Tangent and Cotangent
DOI:
https://doi.org/10.59896/aqlu.v4i1.539Keywords:
fractional integral, Riemann-Liouville, hyperbolic tangent, hyperbolic cotangent, Maclaurin seriesAbstract
This study examines the Riemann-Liouville fractional integral for hyperbolic tangent and cotangent functions with order using Maclaurin series division method and power function fractional integral theorem. Results show the fractional integral of hyperbolic tangent is expressed as a fractional power series with gamma function coefficients, while hyperbolic cotangent has a singular term . MATLAB visualization shows α variations produce different growth characteristics. Hyperbolic tangent is regular with odd function symmetry, while hyperbolic cotangent is singular around the origin. This research provides explicit formulas for fractional calculus applications
References
Artin, E. (2015). The Gamma Function. Courier Dover Publications.
Garrappa, R., Kaslik, E., & Popolizio, M. (2019). Evaluation of Fractional Integrals and Derivatives of Elementary Functions: Overview and Tutorial. In Mathematics (Vol. 7, Issue 5). https://doi.org/10.3390/math7050407
Harini, L. P. I., & Sari, K. (2020). Aplikasi Integral dalam Bidang Ekonomi dan Finansial. E-Jurnal Matematika, 9(2). https://doi.org/10.24843/mtk.2020.v09.i02.p291
Janan, S. (2025). Integral Fraksional dari Fungsi Hiperbolik. MATHunesa: Jurnal Ilmiah Matematika, 13(2), 37–42.
Janan, S., & Janan, T. (2024). Fractional Derivative of Hyperbolic Function. Jurnal Matematika, Statistika Dan Komputasi, 21(1), 267–284.
Johansyah, M. D., Nahar, J., Supriatna, A. K., & Supian, S. (2017). Kajian Dasar Integral dan Turunan Fraksional Riemann-Liouville. Prosiding Industrial Research Workshop and National Seminar, 8, 204–209.
Kilbas, A. A. (2006). Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204.
Miller, K. S., & Ross, B. (1993). An Introduction to The Fractional Calculus and Fractional Differential Equations, John-Wily and Sons. In Inc. New York.
Podlubny, I. (1998). Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications (Vol. 198). Elsevier.
Samko, S. G. (1993). Fractional Integrals and Derivatives. Theory and Applications.
Stewart, J. (2016). Calculus: Early Transcendentals 8th Edition. Cengage Learning.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Syifaul Janan, Andro Kurniawan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.












