ANALISIS INTEGRAL FRAKSIONAL FUNGSI HIPERBOLIK: KASUS TANGEN DAN COTANGEN

Fractional Integral Analysis of Hyperbolic Function: The Case of Tangent and Cotangent

Authors

  • Syifaul Janan Program Studi Teknik Mesin, Universitas Pembangunan Nasional Veteran Jakarta
  • Andro Kurniawan Program Studi Matematika, Institut Teknologi Batam

DOI:

https://doi.org/10.59896/aqlu.v4i1.539

Keywords:

fractional integral, Riemann-Liouville, hyperbolic tangent, hyperbolic cotangent, Maclaurin series

Abstract

This study examines the Riemann-Liouville fractional integral for hyperbolic tangent and cotangent functions with order  using Maclaurin series division method and power function fractional integral theorem. Results show the fractional integral of hyperbolic tangent is expressed as a fractional power series with gamma function coefficients, while hyperbolic cotangent has a singular term . MATLAB visualization shows α variations produce different growth characteristics. Hyperbolic tangent is regular with odd function symmetry, while hyperbolic cotangent is singular around the origin. This research provides explicit formulas for fractional calculus applications

References

Artin, E. (2015). The Gamma Function. Courier Dover Publications.

Garrappa, R., Kaslik, E., & Popolizio, M. (2019). Evaluation of Fractional Integrals and Derivatives of Elementary Functions: Overview and Tutorial. In Mathematics (Vol. 7, Issue 5). https://doi.org/10.3390/math7050407

Harini, L. P. I., & Sari, K. (2020). Aplikasi Integral dalam Bidang Ekonomi dan Finansial. E-Jurnal Matematika, 9(2). https://doi.org/10.24843/mtk.2020.v09.i02.p291

Janan, S. (2025). Integral Fraksional dari Fungsi Hiperbolik. MATHunesa: Jurnal Ilmiah Matematika, 13(2), 37–42.

Janan, S., & Janan, T. (2024). Fractional Derivative of Hyperbolic Function. Jurnal Matematika, Statistika Dan Komputasi, 21(1), 267–284.

Johansyah, M. D., Nahar, J., Supriatna, A. K., & Supian, S. (2017). Kajian Dasar Integral dan Turunan Fraksional Riemann-Liouville. Prosiding Industrial Research Workshop and National Seminar, 8, 204–209.

Kilbas, A. A. (2006). Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204.

Miller, K. S., & Ross, B. (1993). An Introduction to The Fractional Calculus and Fractional Differential Equations, John-Wily and Sons. In Inc. New York.

Podlubny, I. (1998). Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications (Vol. 198). Elsevier.

Samko, S. G. (1993). Fractional Integrals and Derivatives. Theory and Applications.

Stewart, J. (2016). Calculus: Early Transcendentals 8th Edition. Cengage Learning.

Downloads

Published

03-01-2026

How to Cite

Janan, S., & Kurniawan, A. (2026). ANALISIS INTEGRAL FRAKSIONAL FUNGSI HIPERBOLIK: KASUS TANGEN DAN COTANGEN: Fractional Integral Analysis of Hyperbolic Function: The Case of Tangent and Cotangent. Al-Aqlu: Jurnal Matematika, Teknik Dan Sains, 4(1), 63–68. https://doi.org/10.59896/aqlu.v4i1.539